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Abstract. We use the Kubo response function formalism to derive the asymptotic behaviour of the har-
monic generation susceptibilities to all orders n. The results show a stringent correspondence with the ones
previously obtained from the classical anharmonic oscillator model. They are characterized by a ω−2n−2

dependence and a coefficient proportional to the trace of the (n+ 1)th derivative of the potential energy
on the equilibrium density matrix. Using the above results we derive new Kramers-Krönig relations and
sum rules for all orders of harmonics susceptibilities.

PACS. 42.65.-k Nonlinear optics – 42.65.An Optical susceptibility, hyperpolarizability – 42.65.Ky
Harmonic generation, frequency conversion – 78.20.-e Optical properties of bulk materials and thin films

1 Introduction

The theoretical and experimental investigation of har-
monic generation processes is one of the most important
branches of nonlinear optics [1,2]. Since the pioneering
work on second harmonic generation by Franken [3], a
continuous development in this field has produced exper-
imental and theoretical studies of harmonic generation in
solids [4–7], molecules [8] and atoms [9,10], up to very
high orders [11,12] in the last case.

In nonlinear optics the use of integral properties such
as Kramers-Krönig (K.K.) relations and sum rules is not
as common as in linear optics, where they are tools of
fundamental importance for the interpretation of optical
data [13,14]. One reason might have been the modest at-
tention paid to the general theory of holomorphic and in-
tegral properties of nonlinear susceptibilities [15], relevant
efforts in this direction having been made only in recent
years [16–19].

The purpose of this paper is to determine the asymp-
totic behaviour of harmonic generation susceptibilities of
every order and to establish Kramers-Krönig relations and
sum rules, thus extending the results already obtained
for the second [20] and third [21] harmonics. The general
quantum theory of Kubo optical response function [22]
is used.

The results obtained display a strict analogy with
those previously derived [23] with the classical anhar-
monic oscillator model [1,24,25], thus demonstrating its
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relevance to the theory of nonlinear susceptibilities, as as-
sumed by Peiponen [19].

In Section 2 we define the harmonic generation suscep-
tibilities and obtain their explicit expressions. In Section 3
we analyse their asymptotic behaviours. In Section 4 we
obtain K.K. relations and derive sum rules to all orders.
In Section 5 we summarize our conclusions.

2 Quantum expression for the harmonic

generation susceptibility χ
(n)
ij1j2:::jn

(nω;ω, ..., ω)

We consider N electrons in a volume V interacting with
an external static potential V (r) and repelling each other
with Coulomb interaction, and we study the effect of their
coupling with the electromagnetic field of the incident ra-
diation. Therefore the total Hamiltonian of the system is
given by the sum of two terms: the first termH0 represents
the unperturbed Hamiltonian:

H0 =
N∑
α=1

p2
α

2m
+

N∑
α=1

V (rα) +
1
2

N∑
α6=β=1

e2

|rα − rβ |
; (1)

the second term H ′ is given by the interaction of the elec-
trons with the electromagnetic field which we express in
the velocity gauge [26]:

H ′ =
N∑
α=1

(
e
pαj Aj(t)
mc

+
Aj(t)Aj(t)

2mc2

)
, (2)

where the dipolar approximation has been adopted.
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The polarization vector P(t) is defined as:

Pi(t) ≡ −
e

V
Tr

{
N∑
α=1

rαi ρ(t)

}
(3)

where ρ(t) is the density matrix evaluated at the time t
which obeys the quantum Liouville equation [27]:

i~
∂ρ(t)
∂t

= [H, ρ(t)] = [H0, ρ(t)] + [H ′, ρ(t)], (4)

with the initial condition at t = 0 given by the Boltzmann
equilibrium density matrix [27]:

ρ(0) =
∑
a e−Ea/KT |a〉〈a|∑

a e−Ea/KT
, (5)

the sum being made on a complete set of eigenstates |a〉
of the unperturbed Hamiltonian H0 in the Hilbert space
of N identical fermionic particles.

We can solve perturbatively equation (4) by expressing
ρ(t) as a sum [28] of terms of decreasing magnitude:

ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + ...+ ρ(n)(t), (6)

and using an iterative procedure. We thus derive the ex-
pression of ρ(n)(t) and use it to obtain the following ex-
plicit expression of the nth order nonlinear polarization at
time t:

P
(n)
i (t) = − e

V
Tr

{
N∑
α=1

rαi ρ
(n)(t)

}
= − en+1

V (−i~mc)n

× Tr
{∫ +∞

−∞
dτ1dτ2...dτnθ(τ1)θ(τ2 − τ1)...θ(τn − τn−1)

×Aj1(t−τ1)...Ajn(t−τn)

[
N∑
α=1

pαjn(−τn)...,

[
N∑
α=1

pαj2(−τ2),[
N∑
α=1

pαj1(−τ1),
N∑
α=1

rαi

]]]
ρ(0)

}
, (7)

where θ(τ) is the usual step function. This is equivalent to
the Kubo formulation [22], the difference being the choice
of gauge.

We now focus on the typical experimental set-up where
the incident radiation is given by a strictly monochromatic
and linearly polarized field so that we can express A(t) as:

A(t) =
3∑
j=1

ε̂j
cEj
iω

eiωt + c.c. (8)

where ε̂j are the unit vectors x̂, ŷ, ẑ.
Since we are interested in the study of the nth or-

der harmonic generation processes we seek the nω fre-
quency component of the induced nonlinear polarization
P

(n)
i (t). This component is by definition proportional

to einωt and is given by the contribution to the term
Aj1(t − τ1)...Ajk (t − τn) in (7) obtained by the product

of the only positive frequency components (∝ e−iωt) of
every factor Aji(t− τi). It can be written as:

P
(n)
i (t)nω = χ

(n)
ij1,...,jn

nω;ω, ..., ω︸ ︷︷ ︸
n times

Ej1 ...Ejneinωt, (9)

where the nth order harmonic generation susceptibility is:

χ
(n)
ij1,...,jn

nω;ω, ..., ω︸ ︷︷ ︸
n times

 ≡ − en+1

V (~m)nωn

×
∫ +∞

−∞
dτ1...dτnθ(τ1)θ(τ2 − τ1)...θ(τn − τn−1)

×eiωτ1eiωτ2 ...eiωτnTr

{[
N∑
α=1

pαjn(−τn), ...,

[
N∑
α=1

pαj2(−τ2),[
N∑
α=1

pαj1(−τ1),
N∑
α=1

rαi

]]
...

]
ρ(0)

}
. (10)

Also the linear susceptibility χ
(1)
ij (ω) is included in the

above expression when we set n = 1. For every n the
function χ

(n)
ij1j2...jn

(nω;ω, ..., ω) is holomorphic in the up-
per complex ω-plane. In the linear case this can be de-
duced directly from Titmarsch’s theorem [29,30], while
in the nonlinear case the proof can be obtained applying
Scandolo’s theorem [17].
Another general property of the χ(n)

ij1j2...jn
(nω;ω, ..., ω) is:

χ
(n)
ij1j2...jn

(nω;ω, ..., ω) =
(
χ

(n)
ij1j2...jn

(−nω;−ω, ...,−ω)
)∗

∀n, (11)

which can be deduced from (9) taking into account that(
P

(n)
i (t)nω + P

(n)
i (t)−nω

)
has to be a real quantity, since

it describes a real polarization.

3 Asymptotic behaviour of the harmonic

generation susceptibility χ
(n)
ij1j2:::jn

(nω;ω, ..., ω)

The main goal of our study is to determine the asymptotic
behaviour of the factor χ(n)

ij1j2...jn
(nω;ω, ..., ω). We shall see

that it is substantially determined by the short time be-
haviour of the factor Tr{[...]ρ(0)} in expression (10), as ex-
pected from the fact that the frequency dependent suscep-
tibility is its Fourier transform. Our approach is similar to
that used in previous works for the study of integral prop-
erties of χ(2)

ij1j2
(2ω;ω, ω) [20] and χ(3)

ij1j2j3
(3ω;ω, ω) [21], but

allows a natural extension to all orders n.
We begin our analysis by applying in (10) the following

variables change:

τj =
j∑
i=1

ti 1 ≤ j ≤ n (12)
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χ
(n)
ij1j2...jn

0
@nω;ω, ..., ω| {z }

n times

1
A = − en+1

V (~m)nωn

Z +∞

−∞
dt1...dtnθ(t1)θ(t2)...θ(tn)eiω

Pn
j=1(n+1−j)tjTr

(" ∞X
mn=0

NX
α=1

bαmn,jn , ...,

" ∞X
m2=0

NX
α=1

bαm2,j2 ,

" ∞X
m1=0

NX
α=1

bαm1,j1 ,
NX
α=1

rαi

##
...

#
ρ(0)

)
(t1 + ... + tn)mn

mn!
...

(t1 + t2)m2

m2!

tm1
1

m1!
= − en+1

V (~m)nωn

×
Z +∞

−∞
dt1...dtnθ(t1)θ(t2)...θ(tn)eiω

Pn
j=1(n+1−j)tj

∞X
mn=0

...
∞X

m2=0

∞X
m1=0

Bm1,m2,...,mn
i,j1,j2,...,jn

(t1 + ...+ tn)mn

mn!
...

(t1 + t2)m2

m2!

tm1
1

m1!
(16)

and obtain for the harmonic generation susceptibilities:

χ
(n)
ij1j2...jn

nω;ω, ..., ω︸ ︷︷ ︸
n times

 = − en+1

V (~m)nωn

×
∫ +∞

−∞
dt1...dtnθ(t1)θ(t2)...θ(tn)eiω

Pn
j=1(n+1−j)tj

× Tr

{[
N∑
α=1

pαjn(−tn − ...− t1), ...,

[
N∑
α=1

pαj2(−t2 − t1),[
N∑
α=1

pαj1(−t1),
N∑
α=1

rαi

]]
...

]
ρ(0)

}
. (13)

Now we perform a Taylor expansion of the time-dependent
momentum operators about the value zero of their
argument:

N∑
α=1

pαji(−t) =
n∑
α=1

pαj +
∞∑
m=1

N∑
α=1

(
1
i~

)m
× [[...[[pαj ,H0], ..., ]H0]︸ ︷︷ ︸

m times

(−t)m
m!

=
n∑
α=1

pαj +
∞∑
m=1

N∑
α=1

(
1
i~

)m
× [H0, ..., [H0, [H0, p

α
j ]]...]︸ ︷︷ ︸

m times

tm

m!

=
∞∑
m=0

N∑
α=1

bαm,j
tm

m!
(14)

where we have used the commutators’ antisymmetry and
have defined the coefficients bαm,j as:

bαm,j ≡
(

1
i~

)m
[H0, ..., [H0, p

α
j ]]...]︸ ︷︷ ︸

m times

. (15)

Inserting the above expression in (13) we obtain:

see equation (16) above

where we have introduced the following tensorial con-
stants for every term corresponding to the set of upper

indexes {m1, ...,mn}:

Bm1,m2,...,mn
i,j1,j2,...,jn

≡ Tr

{[
N∑
α=1

bαmn,jn , ...,

[
N∑
α=1

bαm2,j2 ,[
N∑
α=1

bαm1,j1 ,
N∑
α=1

rαi

]]
...

]
ρ(0)

}
. (17)

We now concentrate on the term of the summation
inside the integral (16) having Bm1,m2,...,mn

i,j1,j2,...,jn
as common

factor, with the purpose of considering only those terms
which give the lowest asymptotic decrease in ω and are
then responsible for the asymptotic behaviour of the sus-
ceptibility. We expand the polynomials of the temporal
variables ti and obtain the sum of many contributions
which, apart from numerical factors and the Bm1,m2,...,mn

i,j1,j2,...,jn
coefficient, are:

θ(t1)θ(t2)...θ(tn)tp1
i t

p2
2 ...t

pn
n eiωljtj where lj = n+ 1− j,

(18)

with sets {p1, ..., pn} such as m1 + ...+mn = p1 + ...+ pn
thanks to the homogeneity in the total power of the tem-
poral variables. Using the well known result of distribu-
tions theory [31]:∫ +∞

−∞
θ(t1)tpi e

ilωt =
(
−i
l

)p dp

dωp

(
iP
(

1
lω

)
+ πδ(lω)

)
,

(19)

we notice that the asymptotic behaviour in ω of the in-
tegral in (19) is ∝ ω−p−1. This result can be used to inte-
grate expression (18) variable by variable and to obtain:∫ +∞

−∞
dt1dt2...dtnθ(t1)θ(t2)...θ(tn)tp1

i t
p2
2 ...t

pn
n eiω

Pn
j=1 ljtj

∝
(

1
ω

)p1+p2+...+pn+n

=
(

1
ω

)m1+m2+...+mn+n

. (20)

We notice that the power dependence of the Fourier trans-
form of expression (18) is given by n plus the sum on
the exponents of the temporal variables, which is fixed
to be m1 + ... + mn for every term having Bm1,m2,...,mn

i,j1,j2,...,jn
as common factor. Therefore each of these terms, carry-
ing out the integration in (16), results to be proportional
to Bm1,m2,...,mn

i,j1,j2,...,jn
ω−2n−(Pn

j=1 mj). From this we derive that
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B2,0,...,0
i,j1,j2,...,jn

≡ Tr

("
NX
α=1

pαjn , ...,

"
NX
α=1

pαj2 ,

"
NX
α=1

bm1=2,ji ,
NX
α=1

rαi

##
...

#
ρ(0)

)

= Tr

("
NX
α=1

pαjn , ...,

"
NX
α=1

pαj2 , i~
NX
α=1

∂2V (rα)

∂rαji∂r
α
i

#
...

#
ρ(0)

)

= (i~)n(−1)n−1Tr

(
NX
α=1

∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

)
= (i~)n(−1)n−1N Tr

(
∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

)
, (26)

the problem of finding the asymptotic behaviour of the
χ

(n)
i,j1,j2,...,jn

(nω;ω, ..., ω) is equivalent for every order n to
seeking the nonvanishing terms Bm1,m2,...,mn

i,j1,j2,...,jn
which have

the minimum value of the sum of the upper indexes.
To exemplify the procedure we first carry out the cal-

culations for the linear case (n = 1). The susceptibility is:

χ
(1)
ij (ω) = − e2

V ~mω

∫ +∞

−∞
dt1θ(t1)eiωt

× Tr

{[
N∑
α=1

pαj (−t1),
N∑
α=1

rαi

]
ρ(0)

}
.

(21)

The nonvanishingBmij with the minimum value ofm is B0
ij :

B0
ij = Tr

{[
N∑
α=1

pαj ,
N∑
α=1

rαi

]
ρ(0)

}
= Tr {−i~Nδijρ(0)} = −i~Nδij. (22)

and we obtain the well known result of linear optics:

χ
(1)
ij (ω) =

e2

V ~mω

∫ +∞

−∞
dt1(θ(t1)eiωt(−i~Nδij) +O(t01))

= −e
2N

mV

1
ω2
δij + o(ω−2) = −

ω2
p

4π
1
ω2
δij + o(ω−2),

(23)

where O(t01)) represents all the powers of t1 having de-
gree higher than zero, and o(ω−2) represents all the terms
having a power decrease at infinity faster than ω−2.

In the nonlinear case (n > 1) the factor
Bm1,m2,...,mn
i,j1,j2,...,jn

(17) having nonvanishing value and mini-
mum sum m1 +m2 + ...+mn is unique for every n consid-
ered. We prove that B2,0,...,0

i,j1,j2,...,jn
is such a term. The proof

relies on the fact that terms with m1 < 2 vanish and the
others have higher sum of the upper indexes. If m1 = 0
the inmost commutator in the expression of B0,m2,...,mn

i,j1,j2,...,jn
:

B0,m2,...,mn
i,j1,j2,...,jn

≡ Tr

{[
N∑
α=1

bαmk,jk , ...,

[
N∑
α=1

bαm2,j2 ,[
N∑
α=1

pαji ,
N∑
α=1

rαi

]]
...

]
ρ(0)

}
(24)

has a constant value and so the expression vanishes. In
the case m1, the inmost commutator of B1,m2,...,mn

i,j1,j2,...,jn
is:[

N∑
α=1

bαm1,j1 ,
N∑
α=1

rαi

]
=

[
N∑
α=1

(
1
i~

)[
H0, p

α
ji

]
,
N∑
α=1

rαi

]

=

 N∑
α=1

∂V (rαji )
∂rαji

+
1
2

N∑
α6=β=1

∂

∂rαji

(
e2

|rα − rβ |

)

+
∂

∂rβji

(
e2

|rα − rβ |

)
,
N∑
α=1

rαi

]
=

[
N∑
α=1

∂V (rα)
∂rαji

,
N∑
α=1

rαi

]
= 0,

(25)

since both commutator arguments are operators depend-
ing only on spatial variables. Therefore B1,m2,...,mn

i,j1,j2,...,jn
= 0.

We notice that the relevance of the Coulombian e− e re-
pulsive potential is always null since it is invariant for
translations of the whole set of particles and so commutes
with the sum of all the momenta of the particles. In the
case of m1 = 2 we directly prove that have that the term
Bm1=2,m2=0,...,mn=0
i,j1,j2,...,jn

is not identically vanishing:

see equation (26) above

where we have used the fact that the electrons are indis-
tinguishable. This term Bm1=2,m2=0,...,mn=0

i,j1,j2,...,jn
determines

the asymptotic behaviour χ(n)
ij1,...,jn

(nω;ω, ..., ω) because
it doesn’t vanish and has the minimum sum of the upper
indexes.

Using this result in equation (17) we obtain the final
result:

see equation (27) next page

where O({t}2) denotes all the monomials having a total
power degree in the temporal variables higher that two
and o(ω−2n−2) denotes the terms with an asymptotic be-
haviour faster than ω−2n−2.

We observe that the fundamental quantum constant
~ doesn’t appear in the formula (27) which gives the
asymptotic behaviour of the nth order harmonic genera-
tion susceptibility, since it cancels out between denomina-
tor and numerator. The quantum aspect of the expression
we have obtained appears only in the definition of expec-
tation value of the derivatives of the potential energy on
the equilibrium density matrix of the system.

The results we have obtained through a fully quan-
tum mechanical treatment show a clear correspondence
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χ
(n)
ij1,...,jn

0
@nω;ω, ..., ω| {z }

n times

1
A = − en+1

V (~m)nωn

Z +∞

−∞
dt1...dtn

 
θ(t1)θ(t2)...θ(tn)eiω

Pn
j=1(n+1−j)tjB2,0,...,0

i,j1,j2,...,jn

× (t1 + ...+ tn)mn

mn!
...

(t1 + t2)m2

m2!

tm1
1

m1!

����
m1=2,m2=0,...,mn=0

+O
�
{t}2

�!
=

en+1

V (~m)nωn
B2,0,...,0
i,j1,j2,...,jn

Z +∞

−∞
dt1...dtn

�
θ(t1)θ(t2)...θ(tn)eiω

Pn
j=1(n+1−j)tj +O({t}2)

�
=

en+1

V (~m)nωn
(−1)n−1 (i~)n

m
Tr

(
NX
α=1

∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

)�
i

nω

�3

×
NY
j=2

�
i

(n+ 1− j)ω

�
+ o(ω−2n−2) =

(−1)n

m2n!

en+1

mn+1

1

V
Tr

(
NX
α=1

∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

)
1

ωn+2
+ o(ω−2n−2)

=
(−1)n

m2n!

en+1

mn+1

N

V
Tr

(
∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

)
1

ω2n+2
+ o(ω−2n−2) (27)

with the ones we derived from the anharmonic oscillator
model [23], provided we consider the expectation value
of the derivatives of the potential energy as the quantum
analogue of the same derivatives of the classical poten-
tial energy evaluated at the equilibrium position. There-
fore the asymptotic behaviours of the harmonic generation
susceptibilities and consequently their integral properties
do not essentially depend on the microscopic treatment
of the interaction between light and matter, but are con-
nected to the validity of the causality principle in physical
systems.

4 K.K. relations and sum rules
for the χ

(n)
ij1j2:::jn(nω;ω, ..., ω)

In the case of non-metallic matter the knowledge of the
asymptotic behaviour of the χ(n)

ij1,j2,...,jn
(nω;ω, ..., ω) and

its properties of holomorphicity in the upper complex ω
plane due to the application of Scandolo’s theorem [17]
allow us to write the following set of 2n + 2 K.K. type
equations for the nonlinear harmonic susceptibilities:

ω2α<
(
χ

(k)
ij1,j2,...,jn

(nω;ω, ..., ω)
)

=

2
π

∫ ∞
0

dω′
ω′2α+1=

(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

ω′2 − ω2
(28a)

ω2α−1=
(
χ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω)
)

=

− 2
π

∫ ∞
0

dω′
ω′2α<

(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

ω′2 − ω2
(28b)

with 0 ≤ α ≤ n,
where α is such that the αth moment of the harmonic
susceptibility considered decrease at infinity at least as
fast as ω−2. In the linear case, due to the ω−2 asymptotic
decrease of the susceptibility, only the case α = 0 can be
considered.

We observe that the number of independent K.K. re-
lations grows with the order of the process of harmonic
generation considered. The relations (28a, 28b) general-
ize to all orders the results previously obtained for the
second [20] and third [21] harmonic susceptibilities.
For what concerns the experimental use of such K.K. type
relations we recall that Kishida et al. [32] have experimen-
tally verified their validity for the third harmonic process
in the case α = 0. This K.K. relation has been used in the-
oretical studies of second and third harmonic generation
susceptibilities by Moss et al. [33] to obtain the real parts
from the theoretical evaluation of the imaginary parts.

Comparing the asymptotic behaviours as obtained
from expression (27) with those obtained by applying the
superconvergence theorem [34] to the K.K. relations (28)
we immediately obtain the following set of sum rules:∫ ∞

0

dω′ω′2α<
(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

= 0

with 0 ≤ α ≤ n (29a)

∫ ∞
0

dω′ω′2α+1=
(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

= 0

with 0 ≤ α ≤ n (29b)

∫ ∞
0

dω′ω′2n+1=
(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

=

π

2
(−1)n

m2n!
en+1

mn+1

1
V

Tr

{
N∑
α=1

∂n+1V (rα)
∂rαjn ...∂r

α
j2
∂rαji∂r

α
i

ρ(0)

}
=

π

2
(−1)n

m2n!
en+1

mn+1

N

V
Tr

{
∂n+1V (rα)

∂rαjn ...∂r
α
j2
∂rαji∂r

α
i

ρ(0)

}
. (29c)

All the moments of the susceptibility vanish except
the one of order 2n + 1 of the imaginary part of
χ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω). Its value relates the nonlinearity
of the potential energy of the system to the measurements
of the imaginary part of the χ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω).
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Up to now we do not have knowledge of experimental re-
sults related to the sum rules of harmonic generation pro-
cesses, while pump and probe sum rules [35,36], have been
used in the interpretation of an E.I.T. experiment [37]
and in other cases mentioned in the review paper by
Sheik-Bahae [38].

Metallic solids are characterized by the presence of a
nonvanishing static conductance, which changes the in-
tegral properties of their nth order harmonic generation
susceptibilities as in linear optics [8,39–42]. Remember-
ing that at every order the susceptibility can always be
expressed in terms of the conductivity:

χ
(n)
ij1,j2,...,jn

(nω;ω, ..., ω) = i
σ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω)
nω

,

(30)

for frequencies close to zero in the case of metals we have:

χ
(n)
ij1,j2,...,jn

(nω;ω, ..., ω)|ω≈0 ≈ i
σ

(n)
ij1,j2,...,jn

(0)
nω

, (31)

where σ(n)
ij1,j2,...,jn

(0) is the nonvanishing real tensor of non-
linear static conductance of order n.

The presence of this pole at the origin of the ω-axe
changes the second one of the K.K. relations (28b) in the
case α = 0:

P

∫ ∞
0

dω′
<
(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

ω′2 − ω2
=

− π

2ω
=
(
χ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω)
)

+
π

2
σ

(n)
ij1,j2,...,jn

(0)
nω2

,

(32)

and the related sum rule (29a):

P

∫ ∞
0

dω′<
(
χ

(n)
ij1,j2,...,jn

(nω′;ω′, ..., ω′)
)

=

− π

2n
σ

(n)
ij1,j2,...,jn

(0). (33)

They extend to the nonlinear case the well known re-
sults of linear optics, which have been experimentally ver-
ified [39–42].

The K.K. relations and related sum rules we obtain in
the nonlinear case setting 1 ≤ α ≤ n remain unchanged
for metallic matter because the moments of the suscepti-
bilities ω2αχ

(n)
ij1,j2,...,jn

(nω;ω, ..., ω) don’t have poles at the
origin.

In all the applications to solid material we have consid-
ered the Maxwell average electromagnetic field as external
perturbation. If strongly localized states have to be taken
into account we should consider for those transitions the
local field corrections, and our expression for the nth order
harmonic generation susceptibility should be multiplied by
the nth power of:

Eloc(ω)
E(ω)

=
n2

lin(ω) + 2
3

· (34)

This factor doesn’t change the analytical properties and
the asymptotic behaviour of the harmonic generation sus-
ceptibilities since the linear refractive index nlin(ω) is an-
alytical in the upper complex ω plane and the asymp-
totic limit of expression (34) for ω → ∞ is 1. Therefore
the K.K. relations and the sum rules are not affected by
the inclusion of the local field corrections. Modifications
to the susceptibilities considered occur in the individual
transitions.

5 Conclusions

We can summarize the main results obtained above as
follows.

With a rigorous quantum mechanical perturbative
treatment we have derived general integral properties of
the χ(n)

ij1j2...jn
(nω, ω, ..., ω), in particular 2n+ 2 new K.K.

type relations and sum rules. They impose many con-
straints which must be verified by all experimental data
and must be obeyed by any detailed theory regarding har-
monic generation susceptibilities.

The above results display a stringent correspondence
with the ones previously obtained from the anharmonic
oscillator model [23], the reason being that the tempo-
ral causality is the only basic ingredient determining the
integral properties of the susceptibility.

We have also included in our treatment the partic-
ular case of metallic solids, presenting the modifications
appearing order by order in one K.K. relation and in its
related sum rule because of the nonvanishing of the static
nonlinear conductivity.

We conclude that the general results here presented
are of interest for the interpretation of experimental data
in all materials, and for the elaboration of approximate
models, as done in the case of second [43] and third [21]
harmonics. The basic factor which distinguishes different
systems is the trace of the directional derivatives of the
potential energy on the equilibrium density matrix.

This research is based on work supported in part by C.N.R.
under agreement with Scuola Normale Superiore and by
M.U.R.S.T. (Italian Ministry). We wish to thank Giuseppe
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